2025
1.T.A.B. Pinto Silva and D. Gelbwaser-Klimovsky. Fundamental constraints on quantum fluctuations: Conservation laws, reality, and no-signaling.arXiv preprint arXiv:2502.12905 (2025); [arXiv]
2024
1.T.A.B. Pinto Silva and D. Gelbwaser-Klimovsky. Quantum work: reconciling quantum mechanics and thermodynamics. Phys. Rev. Research 6, L022036 (2024); [link] [arXiv]
2. S. Blum and D. Gelbwaser-Klimovsky. Thermalization without detailed balance: population oscillations in the absence of coherences. arXiv preprint arXiv:2409.15991 (2024). [link]
2023
1. J. Fiedler, et. al. Perspectives on weak interactions in complex materials at different length scales. Phys. Chem. Chem. Phys. 25, 2671 (2023) PCCP HOT Articles; [link]
2. R. Alicki, Milan Šindelka and D. Gelbwaser-Klimovsky. Violation of Detailed Balance in Quantum Open Systems. Phys. Rev. Lett. 131, 040401 (2023); [link][arXiv]
2022
1. D. Gelbwaser-Klimovsky, N Graham, M. Kardar and M. Kruger. Equilibrium forces on non-reciprocal materials. Physical Review B 106, 115106 (2022); [link] [arXiv]
2021
1. R. Alicki, D. Gelbwaser-Klimovsky, A. Jenkins. The problem of engines in statistical physics, Entropy 23, 1095 (2021); [link] [arXiv]
2. R. Alicki, D. Gelbwaser-Klimovsky, A. Jenkins. The leaking elastic capacitor as a model for active matter, Physical Review E 103, 052131 (2021); [link] [arXiv]
3. D. Gelbwaser-Klimovsky, N Graham, M. Kardar and M. Kruger. Near field propulsion forces from nonreciprocal media. Physical Review Letters 126, 170401 (2021); [link] [arXiv]
4. R. Alicki, D. Gelbwaser-Klimovsky, A. Jenkins and E. von Hauff. Dynamical theory for the battery’s electromotive force. Physical Chemistry Chemical Physics 23, 9428 (2021); [link] [arXiv]
2020
- D. D. Bhaktavatsala Rao, D. Gelbwaser-Klimovsky, N. Bar-Gill and G. Kurizki. Spin-bath polarization via disentanglement, New Journal of Physics 22, 083035 (2020); [link] [arXiv]
2019
1. ED. Fung, D. Gelbwaser-Klimovsky, J. Taylor, J. Low, J. Xia, I. Davydenko, L. Campos, S. Marder, U. Peskin and L. Venkataraman. Breaking down resonance: nonlinear transport and the breakdown of coherent tunneling models in single molecule junctions, Nano Letters 19, 2555 (2019); [link]
2. D. Gelbwaser-Klimovsky, W. Kopylov and G. Schaller. Cooperative efficiency boost for quantum heat engines, Physical Review A 99, 022129 (2019); [link] [arXiv]
2018
1. A. Ghosh, D. Gelbwaser-Klimovsky, A. Lvovsky, I. Mazets, M. O. Scully, and G. Kurizki. Two-level masers as heat-to-work converters, Proceedings of the National Academy of Sciences 115, 9941 (2018); [link] [arXiv]
2. D. Gelbwaser-Klimovsky, M. Thoss, A. Aspuru-Guzik and U. Peskin. High voltage assisted mechanical stabilization of single-molecule junctions, Nano Letters 18, 4727 (2018); [link] [arXiv]
3. D. Gelbwaser-Klimovsky, A. Bylinskii, D. Gangloff, R. Islam, A. Aspuru-Guzik and V. Vuletic. Single-atom heat machines enabled by energy quantization, Physical Review Letters 120, 170601 (2018); [link] [arXiv]
4. A. Levy and D. Gelbwaser-Klimovsky, Thermodynamics in the quantum regime: quantum features and signatures of quantum-thermal machines (book chapter), Springer (2018); [link] [arXiv]
5. V. Sundar, D. Gelbwaser-Klimovsky and A. Aspuru-Guzik. Reproducing quantum probability distributions at the speed of classical dynamics: a new approach for developing force-field functors, The Journal of Physical Chemistry Letters 9, 1721 (2018); [link] [arXiv]
6. R. Hartle, C. Schinabeck, M. Kulkarni, D. Gelbwaser-Klimovsky, M. Thoss, and U. Peskin, Cooling by heating in nonequilibrium nanosystems, Physical Review B 98, 08140(R)
(2018); [link] [arXiv]
7. E. Horak, D. Gelbwaser-Klimovsky, S. Saikin, A. Aspuru-Guzik and R. Goldsmith. Exploring electronic structure and order in polymers via single-particle microresonator spectroscopy, Nano letters 18, 1600 (2018); [link]
2017
1. R. Alicki, D. Gelbwaser-Klimovsky and A. Jenkins. A thermodynamic cycle for the solar cells, Annals of Physics 378, 71 (2017); [link] [arXiv]
2. D. Gelbwaser-Klimovsky and A. Aspuru-Guzik. On thermodynamic inconsistencies in several photosynthetic and solar cell models and how to fix them, Chemical Sciences, 8, 1008 (2017); [link] [arXiv]
2016
1. D. Gelbwaser-Klimovsky, S. Saikin, R. Goldsmith and A. Aspuru-Guzik. Optical spectra of p-Doped PEDOT nano-aggregates provide insight into the material disorder, ACS Energy Letters 1, 1100 (2016); [link] [arXiv]
2. W. Niedenzu, D. Gelbwaser-Klimovsky and G. Kurizki. On the operation of machines powered by quantum non-thermal baths, New Journal of Physics 18, 083012 (2016); [link] [arXiv]
3. R. Alicki, D. Gelbwaser-Klimovsky and K. Szczygielski. Solar cell as self-oscillating heat engine, Journal of Physics A 49, 015002 (2016); [link] [arXiv]
2015
1. R. Alicki, and D. Gelbwaser-Klimovsky. Non-equilibrium quantum heat machines, New Journal of Physics 17, 115012 (2015); [link] [arXiv]
2. D. Gelbwaser-Klimovsky and A. Aspuru-Guzik, Strongly coupled quantum heat machines, The Journal of Physical Chemistry Letters 6, 3477 (2015); [link] [arXiv]
3. W. Niedenzu, D. Gelbwaser-Klimovsky and G. Kurizki. Performance limits of multilevel and multipartite quantum heat machines, Physical Review E 92, 042123 (2015); [link] [arXiv]
4. D. Gelbwaser-Klimovsky*, W. Niedenzu*, P. Brummer and G. Kurizki. Power enhancement of heat engines via correlated thermalization in a three-level “working fluid”, Scientific Reports 5, 14413 (2015). (* First author equal contribution); [link] [arXiv]
5. D. Gelbwaser-Klimovsky*, W. Niedenzu* and G. Kurizki. Thermodynamics of quantum systems under dynamical control, Advances in Atomic, Molecular, and Optical Physics volume 64, 329 (2015). (* First author equal contribution); [link] [arXiv]
6. D. Gelbwaser-Klimovsky, and G. Kurizki. Quantum mechanically enhanced performance of simple heat machines; Physica Scripta T 165, 014025 (2015); [link]
7. D. Gelbwaser-Klimovsky, K. Szczygielski, U. Vogl, A. Saß, R. Alicki, G. Kurizki, and M. Weitz. Laser-induced cooling of broadband heat reservoirs, Physical Review A 91, 023431
(2015); [link] [arXiv]
8. D. Gelbwaser-Klimovsky, and G. Kurizki. Work extraction from heat-powered quantized optomechanical setups, Scientific Reports 5, 7809 (2015); [link] [arXiv]
2014
1. D. Gelbwaser-Klimovsky, and G. Kurizki. Heat-machine control by quantum-state preparation: from quantum amplifiers to refrigerators, Physical Review E 90, 022102 (2014); [link] [arXiv]
2. D. Gelbwaser-Klimovsky, N. Erez, R. Alicki and G. Kurizki. Can quantum control modify thermodynamic behavior? Canadian Journal of Chemistry, 92, 160 (2014); [link]
2013
1. D. Gelbwaser-Klimovsky, R. Alicki and G. Kurizki. Work and energy gain of heat-pumped quantized amplifiers, Europhysics Letters 103, 60005 (2013); [link] [arXiv]
2. D. Gelbwaser-Klimovsky, N. Erez, R. Alicki and G. Kurizki. Work extraction via quantum nondemolition measurements of qubits in cavities: Non-Markovian effects, Physical Review A 88, 022112 (2013); [link] [arXiv]
3. D. Gelbwaser-Klimovsky, R. Alicki and G. Kurizki. Minimal universal quantum heat machine, Physical Review E 87, 012140 (2013); [link] [arXiv]
4. K. Szczygielski*, D. Gelbwaser-Klimovsky* and R. Alicki. Markovian master equation and thermodynamics of a two-level system in a strong laser field, Physical Review E 87, 012120 (2013). (* First author equal contribution); [link] [arXiv]
2012
1. M. Kolar*, D. Gelbwaser-Klimovsky*, R. Alicki and G. Kurizki. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle, Physical Review Letters 109, 090601 (2012). Editor’s Suggestion. (*First author equal contribution); [link] [arXiv]
2. R. Alicki, D. Gelbwaser-Klimovsky and G. Kurizki. Periodically driven quantum open systems: tutorial, arXiv:1205.4552v1 [quant-ph] (2012); [arXiv]
2010
1. G. Bensky, DDB. Rao, G. Gordon, D. Gelbwaser-Klimovsky, N. Erez, G. Kurizki. Non-Markovian control of qubit thermodynamics by frequent quantum measurements, Physica E 42, 477 (2010); [link] [arXiv]
2009
1. G. Bensky, G. Gordon, D. Gelbwaser-Klimovsky, DDB. Rao, N. Erez, G. Kurizki. Unitary and non-unitary manipulations of qubit-bath entanglement: non-Markov qubit cooling, Quantum information Processing 8, 607 (2009); [link]
2. G. Gordon, G. Bensky, D. Gelbwaser-Klimovsky, DDB. Rao, N. Erez, G. Kurizki. Cooling down quantum bits on ultrashort time scales, New Journal of Physic 11, 123025 (2009); [link]
2008
1. C. Chryssomalakos, D. Gelbwaser-Klimovsky, H. Hernandez, E. Okon. Wires with quantum memory, Modern Physics Letters A 23, 3087 (2008). [link] [arXiv]